Section 9.3

Base b Logarithm

The base *b* logarithm of *x*, is the power to which we need to raise *b* in order to get *x*. Symbolically,

 $\log_b x = y$ means $b^y = x$.

Common logarithm and natural logarithm:

Base 10: $\log_{10} x = \log x$ **Common Logarithm** Base *e*: $\log_e x = \ln x$ Natural Logarithm

Change of Base Formula

$$\log_b a = \frac{\log a}{\log b} = \frac{\ln a}{\ln b}$$

Logarithmic Function

A logarithmic function has the form

 $f(x) = \log_b x + C$ or, alternatively, $f(x) = A \ln x + C$

Logarithmic Identities

The following identities hold for all bases $a \neq 1$ and $b \neq 1$, all positive numbers x and y, and every real number r. These identities follow from the laws of exponents.

- a) $\log_b(xy) = \log_b x + \log_b y$
- b) $\log_b\left(\frac{x}{y}\right) = \log_b x \log_b y$
- c) $\log_b(x^r) = r \log_b x$
- d) $\log_b b = 1; \log_b 1 = 0$
- e) $\log_b x = \frac{\log_a x}{\log_a b}$
- f) $\log_b(b^x) = x$
- g) $b^{\log_b x} = x$

Exponential Decay Model and Half-Life

And exponential decay function has the form

$$Q(t) = Q_0 e^{-kt}$$

 Q_0 represents the value of Q at time t = 0, and k is the decay constant.

Exponential Growth Model and Doubling Time

An exponential growth function has the form

$$Q(t) = Q_0 e^{kt}$$

 Q_0 represents the value of Q at time t = 0, and k is the growth constant.

Problem 1. Write the following values in the logarithmic form.

$$4^3 = 64$$
, $10^{-1} = 0.1$, $2^8 = 256$, $5^0 = 1$, $(0.5)^2 = 0.25$, $6^{-2} = \frac{1}{36}$

Problem 2. Write the following logarithms in the exponential form.

 $\log_5 5 = 1$, $\log_4 \frac{1}{16} = -2$, $\log_4 16 = 2$, $\log_{10} 10,000 = 4$, $\log_7 1 = 0$

Problem 3. Solve the following equations.

a)
$$6^{3x+1} = 30$$

b) $4(1.5^{2x-1}) = 8$

Problem 4. Find the associated exponential growth or decay model.

a) Q = 2000 when t = 0; Half-life = 5.

b) Q = 2000 when t = 0; Doubling-time = 4.

Problem 5. Convert the given exponential function to the form indicated.

a)
$$f(x) = 2.1e^{-0.1x}$$
; $f(x) = Ab^x$

b)
$$f(t) = 23.4(0.991)^t$$
; $f(t) = Q_0 e^{-kt}$

Problem 6. Plutonium-239 is used as a fuel for some nuclear reactors, and also as a fissionable material in atomic bombs. It has a half-life of 24,400 years. How long would it take 10 grams of plutonium-239 to decay to 1 gram?

Problem 7. The half-life of strontium-90 is 28 years.

- a) Obtain an exponential decay model for strontium-90 in the form $Q(t) = Q_0 e^{kt}$.
- b) Use the model to predict, to the nearest year, the time it takes three-fifths of a sample of strontium-90 to decay.

Problem 8. The rate of auto thefts is doubling every four months.

- a) Determine the base b for an exponential model $y = Ab^t$ of the rate of television thefts as a function of time in months.
- b) Find the tripling time to the nearest tenth of a month.

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz: #1, 3, 10, 19, 22, 23, 31, 33, 41, 49, 51, 53