Section 9.3

Base b Logarithm

The base b logarithm of x, is the power to which we need to raise b in order to get x. Symbolically,

$$
\log _{b} x=y \quad \text { means } \quad b^{y}=x .
$$

Common logarithm and natural logarithm:

Base 10: $\log _{10} x=\log x$	Common Logarithm
Base $e: \log _{e} x=\ln x$	Natural Logarithm

Change of Base Formula

$$
\log _{b} a=\frac{\log a}{\log b}=\frac{\ln a}{\ln b}
$$

Logarithmic Function

A logarithmic function has the form

$$
f(x)=\log _{b} x+C \quad \text { or, alternatively, } \quad f(x)=A \ln x+C
$$

Logarithmic Identities

The following identities hold for all bases $a \neq 1$ and $b \neq 1$, all positive numbers x and y, and every real number r. These identities follow from the laws of exponents.
a) $\log _{b}(x y)=\log _{b} x+\log _{b} y$
b) $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
c) $\log _{b}\left(x^{r}\right)=r \log _{b} x$
d) $\log _{b} b=1 ; \log _{b} 1=0$
e) $\log _{b} x=\frac{\log _{a} x}{\log _{a} b}$
f) $\log _{b}\left(b^{x}\right)=x$
g) $b^{\log _{b} x}=x$

Exponential Decay Model and Half-Life

And exponential decay function has the form

$$
Q(t)=Q_{0} e^{-k t}
$$

Q_{0} represents the value of Q at time $t=0$, and k is the decay constant.

Exponential Growth Model and Doubling Time

An exponential growth function has the form

$$
Q(t)=Q_{0} e^{k t}
$$

Q_{0} represents the value of Q at time $t=0$, and k is the growth constant.

Problem 1. Write the following values in the logarithmic form.

$$
4^{3}=64, \quad 10^{-1}=0.1, \quad 2^{8}=256, \quad 5^{0}=1, \quad(0.5)^{2}=0.25, \quad 6^{-2}=\frac{1}{36}
$$

Problem 2. Write the following logarithms in the exponential form.

$$
\log _{5} 5=1, \quad \log _{4} \frac{1}{16}=-2, \quad \log _{4} 16=2, \quad \log _{10} 10,000=4, \quad \log _{7} 1=0
$$

Problem 3. Solve the following equations.
a) $6^{3 x+1}=30$
b) $4\left(1.5^{2 x-1}\right)=8$

Problem 4. Find the associated exponential growth or decay model.
a) $Q=2000$ when $t=0$; Half-life $=5$.
b) $Q=2000$ when $t=0$; Doubling-time $=4$.

Problem 5. Convert the given exponential function to the form indicated.
a) $f(x)=2.1 e^{-0.1 x} ; f(x)=A b^{x}$
b) $f(t)=23.4(0.991)^{t} ; f(t)=Q_{0} e^{-k t}$

Problem 6. Plutonium-239 is used as a fuel for some nuclear reactors, and also as a fissionable material in atomic bombs. It has a half-life of 24,400 years. How long would it take 10 grams of plutonium- 239 to decay to 1 gram?

Problem 7. The half-life of strontium-90 is 28 years.
a) Obtain an exponential decay model for strontium-90 in the form $Q(t)=Q_{0} e^{k t}$.
b) Use the model to predict, to the nearest year, the time it takes three-fifths of a sample of strontium-90 to decay.

Problem 8. The rate of auto thefts is doubling every four months.
a) Determine the base b for an exponential model $y=A b^{t}$ of the rate of television thefts as a function of time in months.
b) Find the tripling time to the nearest tenth of a month.

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz: $\# 1,3,10,19,22,23,31,33,41,49,51,53$

